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In a “classic” phylogenetic inference problem, the ob-
served taxa are assumed to be the leaves of a bifurcat-
ing tree and the goal is to infer just the “topology” of
the tree (i.e., the formal tree structure linking the extant
taxa at the tips), not amount of time between branch-
ing events, or amount of evolution that has taken place
on branches, or character states of interior vertices. Two
of the main methods that biologists now use to solve
such problems are maximum likelihood (ML) and maxi-
mum parsimony (MP); distance methods constitute a third
approach, which will not be discussed here. ML seeks to
find the tree topology that confers the highest probability
on the observed characteristics of tip species. MP seeks
to find the tree topology that requires the fewest changes
in character state to produce the characteristics of those
tip species. Besides saying what the “best” tree is for a
given data set, both methods also provide an ordering of
trees, from best to worst. The two methods sometimes
disagree about this ordering—most vividly, when they
disagree about which tree is best supported by the ev-
idence. For this reason, biologists have had to address
this methodological dispute head on, rather than setting
it aside as a merely “philosophical” dispute of dubious
relevance to scientists “in the trenches.”

The main objection that has been made against ML is
that it requires the adoption of a model of the evolution-
ary process that one has scant reason to think is true.
ML requires a process model because hypotheses that
specify a tree topology (and nothing more) do not, by
themselves, confer probabilities on the observations. The
situation here is familiar to philosophers as an instance of
“Duhem’s Thesis.” Pierre Duhem was a French philoso-
pher of science who contended that physical theories
do not entail' claims about observations unless they
are supplemented with auxiliary assumptions (Duhem,
1914). The American philosopher W.V. Quine (1953) later
generalized Duhem’s thesis, claiming that all hypotheses
fail to entail observational predictions all by themselves.
The present point about genealogical hypotheses gives

!To say that X entails (or implies) Y means that if X is true, then Y
must be true. If X entails Y, then X suffices for Y to be true, and Y is a
necessary condition for X to be true. Some simple facts may give the
reader a feeling for what this logical notion involves: Every proposition
entails itself, the conjunction “A and B” entails A, and A entails the
disjunction “Aor B.” Entailment (implication) is a formal mathematical
relation; it has nothing to do with psychological questions about what
anyone assumes.

a probabilistic twist to the Duhem/Quine thesis. From
a likelihood point of view, it isn’t essential that the
hypotheses we wish to evaluate deductively entail obser-
vational claims about the characteristics of species. What
is required is that they confer probabilities on those obser-
vations. The problem is that they do not. In the language
of statistics, genealogical hypotheses are composite, not
simple.

The main objection that has been made against MP is
that parsimony implicitly assumes this or that question-
able proposition about the evolutionary process. The dif-
ficulty here is that it is far from clear which propositions
the method in fact assumes. Because MP is standardly
formulated as a rule for choosing among phylogenies
that contain no reticulations, it is natural to suspect that
the method assumes that evolution is a branching pro-
cess in which no reticulations occur; however, users of
parsimony need not postulate a tree structure as an ad-
ditional assumption, because it is a result in the the-
ory of Steiner trees (a Steiner tree is also a topology,
though it may contain reticulations) that the most par-
simonious graph will have a tree structure (Semple and
Steel, 2003: 97-98). One also might wonder whether MP
assumes that evolution proceeds parsimoniously—does
MP assume that if a lineage starts with one charac-
ter state and ends with another, that it got there via
a trajectory that involved the smallest possible num-
ber of evolutionary changes? This allegation has been
strenuously denied by proponents of parsimony (see,
e.g., Farris, 1983), some of whom maintain that parsi-
mony assumes only that there has been descent with
modification.

Which is better—using a method that explicitly makes
unrealistic assumptions or a method whose assumptions
are unknown? I will argue that this unhappy dilemma
misrepresents the dialectical situation. Likelihood meth-
ods do not require one to adopt a single process model.
And something substantive is known about what par-
simony assumes, though much less than some have
suggested. These are the two topics I'll address in what
follows.

The debate about ML and MP may appear to some
biologists to be settled by the type of data one wishes
to analyze, the thought being that aligned sequences re-
quire ML and phenotypes require MP. To be sure, ML
is often applied to sequences and rarely to phenotypes
(see Lewis, 2001 for an exception), whereas MP is of-
ten applied to morphological data and with increasing
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FIGURE 1. Two sites in each of two aligned sequences drawn from
different branches of a phylogeny.

reluctance to sequences. However, this is a sociological
fact, not a logical inevitability. In what follows I will de-
scribe a set of questions that must be addressed if ML is to
be used on sequence data; the very same questions also
are central to the task of applying ML to phenotypic data.
Symmetrically, MP can be applied to sequence data just
as it can be applied to morphology. In addition, ML and
MP are sometimes equivalent (more on this below), so it is
hard to see how MP can be tied essentially to phenotypic
data and ML to sequence data. Choice of a type of data
leaves open what method one should use in interpreting
that data—that is, an argument is required for opting for
one approach rather than the other. The data do not have
written on their sleeves which method one ought to use.”

LIKELIHOOD METHODS WITH MULTIPLE
PROCESS MODELS

Biologists have used ML to compare different ge-
nealogical hypotheses under different models of the evo-
lutionary process. Because this methodology is most of-
ten encountered in studies that use sequence data, I will
discuss ML in that context. To get a feeling for the dif-
ferent process models that have been used, consider two
lineages and the aligned sequences of G’s, A’s, T’s, and
C’s present in each, as depicted in Figure 1. I refer to
each location in a sequence as a “site.” To model the evo-
lutionary process at work in the two lineages, we need
to answer the following questions:

Across branches within sites: must a change from one letter
to another at a site in a branch have the same proba-
bility per unit time as the same change in a different
branch at the same site?

Across sites within branches: must a change from one letter
to another at one site in a branch have the same prob-
ability per unit time as the same change at a different
site in the same branch?

Within sites within branches: must a change from one letter
to another at one site in a branch have the same prob-
ability per unit time as any other change at the same
site in the same branch?

The Jukes-Cantor (1969) model answers all three ques-
tions in the affirmative. This model contains a single
parameter, which characterizes the probability per unit
time of all possible changes at all sites in all lineages.
The Kimura (1980) model says yes to the first and second

2T also should mention that I will not discuss ML or MP in connection
with data on gene order or on SINEs.

Simpler and Jukes-Cantor
more idealized /
Kimura
\ Tuffley-Steel
more complex /
and more realistic 12mn

FIGURE 2. Models of the evolutionary process are simpler or more
complex according to how many adjustable parameters they contain.
The arrow represents deductive implication; “M; — M,” means that if
M, is true, M, must be true.

question but 70 to the third; it is a two-parameter model
in which transversions and transitions are allowed to
have different probabilities. Both these models are pretty
simple, in terms of the number of adjustable parameters
they contain. Far more complex is the Tuffley and Steel
(1997) “no common mechanism” model, which says no
to the first two questions but yes to the third. It allows
different branches to follow different rules, and different
sites in the same branch to do so as well. However, this
model requires that all changes at a site on a branch have
the same probability. If there are m branches in the tree
one is considering and the sequence of nucleotides in
one’s data set contains # sites, then there are mn parame-
ters in this model. There is an even more complex model
than the one explored by Tuffley and Steel; it drops the
requirement that all changes at a site on a branch have
the same probability, thus answering yes to all three ques-
tions. I will call this the 12m#n model, for the number of
parameters it contains.® I mention this range of possi-
bilities, not because I think they are equally good (see
below) but to give an indication of the choices that are
available. For additional models, see Page and Holmes
(1998) and Swofford et al. (1996).

Notice that the three questions just listed ask about
constraints that must be obeyed. Negative answers sim-
ply leave matters open. For example, the Jukes-Cantor
model assumes that a change from Ato C and a change
from G to T must have the same probability, whereas the
Kimura model leaves open whether these changes have
the same or different probabilities. The logical relation-
ships that obtain among the four models discussed thus
far are shown in Figure 2. The Jukes-Cantor model en-
tails (is a special case of) the three other models. As one
follows a chain of arrows from top to bottom, models
become less restrictive, more realistic, and more com-
plex. It is an idealization to say that transitions and
transversions must have precisely the same probability,
and it can hardly fail to be true to say that they may or
may not have the same probability. The most complex
model described—the 12mn model—is the least ideal-
ized model mentioned; it can hardly fail to be true that

3As an expository convenience, I will ignore the number of param-
eters that these models require for the state of the root of the tree.
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each change in each site in each branch may have its own
unique probability of occurring, though it need not. But
even this very complex model contains an idealization—
like the others mentioned, it assumes that each site
evolves independently of all the others. A model that al-
lowed for the possibility of probabilistic dependencies
across sites would be even more complicated.

How are these different process models put to work
in a likelihood assessment of phylogenetic hypotheses?
Here I must return to the Duhemian point described be-
fore. Suppose we are interested in the genealogical re-
lationship of Humans, Chimps, and Gorillas. Assum-
ing that the tree must be strictly bifurcating (i.e., that it
contains no reticulations or polytomies), there are three
possible rooted trees—(HC)G, H(CG), and (HG)C. As
noted earlier, none of these confers a probability on the
characteristics we observe. However, the same is true if
we conjoin these genealogical hypotheses with one or
another of the process models just described. The rea-
son is that each process model contains at least one ad-
justable parameter. Until values for adjustable parame-
ters are specified, we cannot talk about the probability of
the data under different hypotheses. In short, the propo-
sitions that have well-defined likelihoods take the form
of a conjunction:

Tree topology & process model & specified values for the
parameters in the model.*

The parameters that describe the probabilities of differ-
ent changes are examples of what statisticians call nui-
sance parameters. The reason for this name is not that biol-
ogists never take an interest in these probabilities; rather,
the point is that when we are interested in comparing the
likelihoods of different tree topologies, we are forced to
deal with questions about the evolutionary process even
though these are not the focus of our interest. Indeed,
Edwards (1972) remarks that the process model itself,
and not just the values of the parameters it contains, may
be viewed as a nuisance parameter. Of course, what is a
nuisance parameter in one problem may be the subject
of interest in another; for example, in testing hypothe-
ses about natural selection, the tree topology will be a
nuisance parameter.

There are different statistical philosophies that provide
guidance concerning how nuisance parameters should
be handled. To clarify how they differ, I want to consider
a much simpler problem as an example. Suppose you
observe (O) that an organism is a heterozygote at a given
locus and you wish to compare the likelihoods of three
hypotheses about the genotype of the organism’s mother:

(Hy) Mom is AA. (Hp) Mom is Aa. (Hz) Mom is aa.

*Although these models specify the probabilities of different
changes per unit time, they also describe how the probability of a
branch’s ending in some state, given that it begins in another, depends
on the “instantaneous” probabilities of change and on the branch’s du-
ration. In the end, what we need to know are values for the “branch
transition probabilities” that the conjunction of a topology and a pro-
cess model postulates.

1.0 H;

Pr(OIH) 0.5 H,

0 H;
aa Aa AA
Dad’s genotype

FIGURE 3. Thelikelihoods of three hypotheses about Mom’s geno-
type, relative to the observation (O) that the offspring is a heterozygote.
For two of them (H; and H3), Dad’s genotype is a nuisance parameter.

The inferential situation is depicted in Figure 3. Notice
that H, has the same likelihood, regardless of what the
father’s genotype is, whereas H; and H; have different
likelihoods, depending on what the father’s genotype is
taken to be. H, is said to be “statistically simple,” whereas
H, and H; are composite. For H; and Hj, the father’s
genotype is a nuisance parameter.

There are three ways to solve this problem. The first is
entirely noncontroversial. If you know the father’s geno-
type, you should use that information to compare the
likelihoods of the three hypotheses. This knowledge will
settle which of three likelihood orderings is the right
one to consider; if Dad is AA, the likelihood order-
ing is H; > H, > H;, if Dad is Aa, the three hypothe-
ses are equally likely, and if Dad is aa, the ordering is
H; > H, > H;. However, if you don’t know Dad’s geno-
type, what should you do?

This brings us to the second procedure for dealing
with nuisance parameters. According to Bayesianism,
you need to estimate the values of different conditional
probabilities. For H;, you need to

(Bayes-1) Estimate Pr(Dad is AA | Mom is AA), Pr(Dad
is Aa | Mom is AA), and Pr(Dad is aa | Mom is
AA),

whereas for Hz, what is required is that you

(Bayes-3) Estimate Pr(Dad is AA | Mom is aa), Pr(Dad is
Aa | Mom is aa), and Pr(Dad is aa | Mom is aa).

Notice that it is perfectly possible for these two triplets of
numbers to have different values. For example, if there is
strong positive assortative mating, Pr(Dad is AA | Mom is
AA) will be large whereas Pr(Dad is AA | Mom is aa) will
be small. Only in the special case where there is random
mating will the two triplets be the same. The obvious way
to estimate the values of these nuisance parameters is to
observe the frequencies of different matings in the popu-
lation. In the absence of such frequency data, a Bayesian
may suggest adopting a set of assumptions that allows
one to assign values to the nuisance parameters. These
assumptions may or may not be plausible; the point I
want to emphasize is that they address a question of a
certain form—what are the probabilities of the different
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genotypes that Dad may have, conditional on Mom’s
having this or that genotype? Bayesians take seriously
the fact that the likelihood of a composite hypothesis
is a weighted average of the likelihoods that arise from
different settings of the nuisance parameters, where the
weights are supplied by the conditional probabilities of
those settings. For example,

Pr(Offspring is Az | Mom isAA) =
Pr(Offspring is Az | Mom is AA & Dad is AA)
x Pr(Dad isAA | Mom isAA)
+ Pr(Offspring isA1 | Mom is AA & Dad isAa)
x Pr(Dad isAa | Mom is AA)
+ Pr(Offspring isAa | Mom isAA & Dad is aa)
x Pr(Dad is aa | Mom isAA)
= ZPr(Offspring isAa | Mom isAA
i

& Dad has genotypei)
x Pr(Dad has genotypei | Mom is AA).

Notice that Pr(Offspring is Aa | Mom is AA) will be
strictly between 0 and 1 if the three weighting terms are
all nonzero.

The third strategy for handling nuisance parameters
is the one used in frequentist statistics. Instead of try-
ing to figure out what Dad’s genotype probably is, con-
ditional on different hypotheses about Mom’s genotype,
one simply assigns a genotype to Dad that maximizes
the likelihood of the hypothesis about Mom. For H;, your
procedure is to

(Freg-1) Assign to Dad a genotype x that maximizes the
value of Pr(Offspring is Aa | Mom is AA and
Dad is x),

whereas for Hz, you should

(Freg-3) Assign to Dad a genotype x that maximizes the
value of Pr(Offspring is Aa | Mom is aa and Dad
is x).

The assignment licensed by (Freq-1) is that Dad is ag,
whereas that endorsed by (Freqg-3) is that Dad is AA.
The result is that H; and H; both have likelihoods of
unity, whereas H, (which, recall, contains no nuisance
parameters) has a likelihood of 1. Notice that (Freq-1)
and (Freq-3) tailor their recommendations about the set-
ting of the nuisance parameter to the hypothesis under
consideration, just as (Bayes-1) and (Bayes-3) do. The
difference is that Bayesians seek to determine the prob-
abilities of different settings of the nuisance parameter,
given the hypotheses under consideration, whereas fre-
quentists assign values that maximize the likelihoods of
the hypotheses under consideration.

Of the three strategies described, the first is the best.
However, if we don’t know what Dad’s genotype is,
should we be Bayesians or frequentists? Here it seems

clear to me that we should be Bayesians if we can ob-
tain good estimates from frequency data of the relevant
conditional probabilities. But if we lack this sort of infor-
mation, what should we do? I will not attempt to answer
this question here. Instead, I want to explain how these
three strategies apply to the problem of dealing with the
nuisance parameters that arise in phylogenetic inference.
In our running example, we want to compare the likeli-
hoods of three genealogical hypotheses about Humans,
Chimps, and Gorillas. We have sequence data from each
species, and we can use one or more process models—
Jukes-Cantor, Kimura, Tuffley-Steel, and so on. In each
instance, we need to assign values to the nuisance pa-
rameters if the genealogical hypotheses are to have de-
terminate likelihoods.

The first strategy just described for handling nuisance
parameters is to find out which process model is true and
what the true values are for the parameters in that model.
The problem with this strategy is that all the models de-
scribed so far contain idealizations and so all are false.
A fully realistic model would need even more parame-
ters than those contained in the 12mn model because it
would have to replace the assumption of independence
between sites with a suite of parameters that allow for
possible failures of independence. Full realism would
require so many parameters that it would be impossi-
ble to estimate their values. The situation is analogous to
the following coin-tossing problem. Suppose you take
50 pennies and toss each of them once. One possible
model is very simple; it says that the coins have iden-
tical probabilities of landing heads. You can obtain a ML
estimate of the value of this single parameter by seeing
what proportion of the 50 tosses landed heads. An alter-
native model is both more realistic and more complex;
it takes seriously the possibility that each of the coins
may have its own unique probability of landing heads,
and so this model contains 50 parameters, one for each
coin. If you use ML to estimate the values of those 50 pa-
rameters, you will infer that the coins that landed heads
had a probability of unity of landing heads and that the
coins that landed tails had a probability of unity of land-
ing tails. These estimates will be subject to huge error,
because you have only one observation that pertains to
each. Although the 50-parameter model is more realistic
than the 1-parameter model, it is far from clear that you
should use the more realistic model if you want to predict
a second round of tosses. In coin tossing as in evolution,
the realism of a model can be increased by increasing the
number of parameters. However, the price of making a
model more realistic is that it becomes more difficult to
accurately estimate parameter values.

I now turn to the third strategy described above for
handling nuisance parameters—the frequentist proce-
dure. Here, for each conjunction that has the form “ge-
nealogical hypothesis & process model,” we must find
the setting of the parameters that maximizes the like-
lihood of the conjunction. An example is depicted in
Table 1. Notice that the settings of parameter values for a
given process model can, in principle, change when we
shift from one genealogical hypothesis to another; that
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TAaBLE1. Conjunctions of the form “process model & tree topology”
contain adjustable parameters; these are nuisance parameters in the
context of making inferences about topologies. Frequentists set these
at their maximum likelihood values, denoted by “L[process model &
tree topology].”

Model (HOG H(CG)
12mn LI(HOG & 12mn] L[H(CG) & 12mn]
Tuffley-Steel ~ LI(HC)G & Tuffley-Steel]  LI(H(CG) & Tuffley-Steel]
Kimura LI(HC)G & Kimura] L[H(CG) & Kimura]

Jukes-Cantor L[(HC)G & Jukes-Cantor] L[H(CG) & Jukes-Cantor]

is, entries in the same row can differ. That is why I've
written “L[genealogical hypothesis & model]” in the dif-
ferent cells, not “genealogical hypothesis & L[model].”

Now let’s consider the second, Bayesian, strategy for
dealing with nuisance parameters. Here there are two
tasks that need to be discharged, because

Pr[Data | (HC)G]
= Z Z Pr[Data | (HC)G & process model i
i

& values j for the parameters in model ]
x Pr[process model i & values j for the
parameters in model i | (HC)G].

I state this as a (discrete) summation rather than as a (con-
tinuous) integration to make the concepts more trans-
parent. The second product term on the right-hand side
is where the problems arise. One needs to compute the
probabilities of process models and of the values of pa-
rameters in those process models, conditional on the tree
topology whose likelihood is under evaluation. It is hard
to know what to say about the first of these, except that
simpler models can’t have higher probabilities than the
more complex models in which they are nested. For ex-
ample, it is a consequence of the axioms of probabil-
ity theory that Pr(Jukes-Cantor | (HC)G) < Pr(Kimura |
(HC)G). Although Bayesians may one day take on the
problem of assigning probabilities to process models, in
the phylogenetic literature they so far have declined to
do so; instead, they have chosen a single process model
and estimated the values of the conditional probabilities
found in one of the rows in Table 2. It is important to re-
alize that the conjunction of a process model (like Jukes-
Cantor) and a genealogical hypothesis does not provide

TABLE 2. Bayesians handle the nuisance parameters in a conjunc-
tion of the form “tree topology & process model” by seeking to discover
the probabilities of the various settings that the nuisance parameters
may have, conditional on the conjunction.

Model (H)CG H(CG)

12 mn Pr[parameter values |
HC(G) & 12 mn]
Pr[parameter values |
(HO)G & Tuffley-Steel]
Pr[parameter values |
(HCO)G & Kimura]
Pr[parameter values |
(HCO)G & Jukes-Cantor]

Pr[parameter values |
H(CG) & 12 mn]
Pr[parameter values |
H(CG) & Tuffley-Steel]
Pr[parameter values |
H(CG) & Kimura]
Pr[parameter values |
H(CG) & Jukes-Cantor]

Tuffley-Steel
Kimura

Jukes-Cantor

instructions about how one should figure out how prob-
able this or that setting of the parameter values is; this
requires additional assumptions.

Although I earlier used the problem of comparing the
likelihoods of hypotheses about Mom’s genotype as a
heuristic for explaining the problem of nuisance param-
eters in phylogenetic inference, it is important to rec-
ognize a difference between the two problems. There is
an objective basis for using Bayesian methods in the ge-
netics problem. The system of mating that a population
obeys is a biological property of the population that can
be ascertained by looking at frequency data. However,
it is very hard to see how the Bayesian approach to nui-
sance parameters in phylogenetic inference can be put on
an objective footing. And even if the Bayesian declines
to assign probabilities to process models (a refusal rep-
resented in Table 2), it still is hard to see how objective
probabilities are to be assigned to the parameter values
in a process model. Readers will have to decide for them-
selves how much subjectivity they are willing to tolerate
in methods of phylogenetic inference.

Let’s go back to the frequentist approach to the prob-
lem of nuisance parameters, whose solution is depicted
in Table 1. We have found the likeliest setting of the pa-
rameters in each conjunction of the form “genealogical
hypothesis & model.” We now must ask how the like-
lihoods of these different conjunctions compare. Likeli-
hoods tend to increase as we ascend each column, be-
cause the presence of a larger number of parameters
allows a model to achieve greater fit to data. How-
ever, the likelihoods in rows also tend to get closer to-
gether as we ascend (Lewis, 1998). And once we reach
a sufficiently complex process model—say, the 12 mn-
parameter model—the likelihoods are identical; each has
achieved the maximum value of unity, no matter what
the data happen to be. Does this mean that we reduce,
and ultimately obliterate, our ability to discriminate be-
tween genealogical hypotheses as we make our models
more realistic?

Whether this depressing thought is correct depends on
the method used to compare the conjunctions depicted
in Table 1. If we retain only those conjunctions whose
likelihoods are maximal, we will have to conclude that
the three conjunctions in the top row are best, but that
we are unable to discriminate among them. However,
frequentists do not endorse this procedure. Rather, they
use the likelihood ratio test. According to this method, the
question is whether the likelihood of a more complex
model is sufficiently greater than the likelihood of a sim-
pler model to justify rejecting the simpler model. Thus,
it is not inevitable that one will reject all conjunctions
in a column, save for the one at the top. However, there
is a problem with this approach—Ilikelihood ratio tests
are well grounded only for nested models. The proce-
dure makes sense for some of the “vertical” comparisons
in Table 1, but not for “horizontal” or “diagonal” com-
parisons (Felsenstein, 2004: 318-319). See Burnham and
Anderson (2002: 337-339) for additional criticisms.

Because of this, biologists should consider setting like-
lihood ratio tests to one side and shifting to a model
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selection criterion such as the one proposed by Akaike
(1973). AIC—the Akaike information criterion—applies
to nested and non-nested models alike; it is based on a
theorem that Akaike (1973) proved (see also Sakamoto
et al. [1986] and Burnham and Anderson [1998]):

An unbiased estimate of the predictive accuracy
of model M ~ log[Pr(Data | L(M)] — k.

Here M is a model that contains adjustable parameters;
in the case at hand this would be a conjunction of a
genealogical hypothesis and a process model. L(M) is
the likeliest setting of the parameters in the model. One
merely computes the log-likelihood of this fitted model
and then subtracts k, which is the number of adjustable
parameters in the model. Although likelihood increases
as we ascend the columns in Table 1, so does the value of
k. For this reason, it is not inevitable that more complex
models will receive better AIC scores than simpler ones;
that depends on the data. Forster and Sober (1994) sug-
gest the term “predictive accuracy” for the quantity that
AIC attempts to estimate. The predictive accuracy of a
model is how well, on average, it will predict new data
when fitted to old data. Kishino and Hasegawa (1990)
have applied AIC to choice between tree topologies; see
Posada and Crandall (2001) and Posada and Buckley
(forthcoming) for further discussion.

In using AIC, one obtains an ordered list, from best to
worse, of conjunctive hypotheses, each of which has the
form “genealogical hypothesis & process model.” The
Duhemian point continues to apply—in the first instance,
what one is testing are the different conjunctions, not the
genealogical hypotheses taken on their own. Still, one
can reach inside the conjunctions and examine the con-
juncts of interest in the following way. Suppose (HC)G
is the genealogical hypothesis that figures in the first 5,
or 15, or 50 conjunctions at the top of the list. The larger
this group of conjunctions is, the more we are entitled to
conclude that the data favor (HC)G. In this case, (HC)G
is robust across variation in process model, and the more
robust the better. But suppose that (HC)G appears in the
first, but not the second, of the conjunctions on this list,
and then appears in the third through twentieth entries.
Because AIC provides a quantitative score for each con-
junction, and not just an ordering of conjunctions, one
can ask what the average effect is of shifting from one
tree topology to another. For example, in our running
example, perhaps AIC scores are on average improved
by moving from H(CG) to (HC)G across a range of process
models. The suggestion is to treat AIC scores (or perhaps
the Akaike weights discussed in Burnham and Anderson
1998) rather like the data that figure in applications of
the analysis of variance.

Bayesians face a similar Duhemian problem if they
decline to say how probable this or that process model
is, conditional on a tree topology. This refusal prevents
them from computing the likelihoods of tree topologies;
instead, they restrict themselves to computing the av-
erage likelihood of conjunctions that have the familiar
form “genealogical hypothesis & process model.” How-

ever, the question can still be addressed of whether, say,
(HC)G has a higher likelihood than H(CG) for each of
several process models. The larger the range of process
models for which this holds, the more robust (HC)G is.
But suppose (HC)G is more likely than H(CG) for some
process models but that the reverse is true for others.
What can a Bayesian say about such cases?

One solution would be to embrace the idea of assigning
values to conditional probabilities of the form Pr(process
model | tree topology). As noted earlier, when models are
nested, there is a constraint on those probabilities; for
example, Pr(Jukes-Cantor | —) < Pr(Kimura | —). Once
this constraint is satisfied, it is unclear what, beyond the
subjective convictions of the investigator, can be used
to justify such assignments. Bayesians also may want to
consider using the Bayesian information criterion (BIC)
first derived by Schwarz (1978):

Pr(Data | Model M) ~ log[Pr(Data | L(M)] — (k/2)log(n),

where 7 is the size of the data. Before pressing this re-
sult into service, biologists should consider the assump-
tions that enter into its proof; the same is true, of course,
for frequentists who contemplate using AIC. Notice that
BIC imposes a penalty on models for complexity, though
the penalty differs from the one that AIC deploys. This
may give the impression that the two criteria are in con-
flict. In fact, they are not, because AIC and BIC have
different goals—the former estimates predictive accu-
racy whereas the latter estimates average likelihood. BIC
scores for conjunctions of genealogical hypotheses and
process models can be ordered from best to worst; as with
AIC, one question would be whether one genealogical
hypothesis dominates the others in all the conjunctions
considered. However, if no genealogical hypothesis is ro-
bust in this sense, one can see what the average effect is on
BIC scores of shifting from one tree topology to another
across a range of process models.

Regardless of this difference between frequentist and
Bayesian approaches to the problem of nuisance param-
eters, the use of model selection criteria such as AIC and
BIC leads to the following conclusion—statistical infer-
ence of genealogical hypotheses does not require one to choose
a single process model and assume that it is true. In fact, one
needn’t even assume that there is a true model on the list
of process models considered; all may contain idealiza-
tions. Statistical methods permit one to explore multiple
models. One can consider both relatively simple models
that impose substantial idealizations and more complex
models that are more realistic. However, the hope of us-
ing a fully realistic process model must be abandoned,
since it will contain too many parameters.

WHAT DOES PARSIMONY ASSUME ABOUT
THE EVOLUTIONARY PROCESS?

What does the word “assume” mean in the question
that forms the title of this section? An example from out-
side science provides some guidance. Consider the two
sentences

(P) Jones is poor but honest
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and

(A) There is a conflict between being poor and being
honest.

I hope it is clear that (P) assumes (presupposes) that (A) is
true, but that (A) does not assume that (P) is true. Notice
that (P) entails (A)—that is, if () is true, then (A) must
also be true. However, (A) does not entail (P); if there is a
conflict between poverty and honesty, this says nothing
about Jones and the characteristics he happens to have.
This points to a general fact about what it means to talk
about the assumptions of a proposition:

If P assumes A, then P entails A.

To find out what a proposition assumes, you must look
for conditions that are necessary for the proposition to be
true, not for conditions that suffice for the proposition’s
truth (Sober, 1988).

Given this clarification of what an assumption is, we
can turn to the question of what it means to ask what
parsimony assumes. What parsimony assumes about the
evolutionary process are the propositions that must be
true if parsimony is to be alegitimate method of phyloge-
netic inference. But what does “legitimate” mean? There
are a number of choices to consider. For example, one
might demand that a legitimate phylogenetic method
be statistically consistent—that it converge on the true
phylogeny as the number of observations is made large
without limit. This is the approach taken in Felsenstein
(1978). The question about parsimony’s assumptions
then becomes—what features must the evolutionary pro-
cess have if parsimony is to be statistically consistent?
Those who reject the requirement of statistical consis-
tency will not accept this line of argument. For example,
Sober (1988) argues that likelihood methods can be legit-
imate even when they fail to be statistically consistent.
And it turns out that Tuffley and Steel’s (1997) no com-
mon mechanism model has the consequence that both
likelihood and parsimony are statistically inconsistent—
there are settings of the parameters in that model that
lead both methods to converge on a false genealogical
hypothesis. Biologists who think that the Tuffley-Steel
model is a legitimate model to consider—perhaps as one
of a range of candidate process models—will not want
to embrace the requirement of statistical consistency.

The interpretation I want to explore here maintains
that parsimony is a legitimate method precisely when
it is ordinally equivalent with likelihood. This idea is
easy to understand by considering the Fahrenheit and
Centigrade scales of temperature. These are ordinally
equivalent, meaning that for any two objects, the first
has a higher temperature-in-Fahrenheit than the second
precisely when the first has a higher temperature-in-
Centigrade than the second. The two scales induce the
same ordering of objects. For parsimony and likelihood
to be ordinally equivalent, the requirement is that

(OE) For any phylogenetic hypotheses H; and H,, and
for any data set D, H; provides a more parsi-

monious explanation of D than H, does precisely
when PI‘M(D | H1) > PI‘M(D | Hz)

The subscript “M” in the likelihood terms is there
to remind us of the Duhemian point that phyloge-
netic hypotheses do not confer probabilities on data,
save in the context of a process model. In fact, it is
misleading to talk of parsimony and likelihood be-
ing, or failing to be, ordinally equivalent. Rather, the
question is whether likelihood-when-implemented-by-
an-assumed-process-model-M is or is not ordinally
equivalent with parsimony. I am interested in (OE) as
a device for exploring the legitimacy of parsimony be-
cause I already think that likelihood is a good measure of
the degree to which evidence favors one hypothesis over
another. However, (OE) could be employed in the op-
posite direction—by someone who already believes that
cladistic parsimony is legitimate, and who wants to see
whether likelihood can be justified in terms of parsimony:.

So our question about the assumptions that parsimony
makes about the evolutionary process comes to this—
which propositions about evolution must be true, if (OE)
is correct? For example, does parsimony presuppose the
no common mechanism model described by Tuffley and
Steel (1997)? What Tuffley and Steel demonstrated is that
the no common mechanism model suffices for ordinal
equivalence. This means that someone using that model
to estimate the likelihoods of tree topologies (while using
the frequentist strategy for handling nuisance parame-
ters) will single out as the likeliest tree the very same tree
as someone using parsimony on the same data. However,
the Tuffley-Steel result does not show that parsimony as-
sumes that the no common mechanism is true; no one
has established that this model is necessary for ordinal
equivalence to obtain (and it isn’t—see below).

Still, the Tuffley-Steel result has great significance for
the question of what parsimony assumes, in virtue of the
fact that logical entailment is transitive:

no common mechanism model — ordinal equivalence
— assumptions of parsimony

Any proposition that is entailed by ordinal equivalence
also must be entailed by the no common mechanism
model. However, the fact that a proposition is entailed
by the no common mechanism model does not ensure
that it is entailed by ordinal equivalence. This provides
the following partial test for whether a proposition is
assumed by parsimony (Sober, 2002):

If a proposition is entailed by the no common mecha-
nism model, it may or may not be an assumption that
parsimony makes.

If a proposition is not entailed by the no common mech-
anism model, it is not an assumption that parsimony
makes.

This test for what parsimony assumes has some inter-
esting consequences. First, the no common mechanism
model does not entail that homoplasies are rare or that
the probability of change on branches is very low. Hence
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parsimony does not assume that homoplasies are rare or
that change is very improbable. This result is significant,
in view of Felsenstein’s (1973, 1979) argument that a
low probability of change on branches suffices for parsi-
mony and likelihood to coincide. The Tuffley-Steel model
also does not entail that the probability of a change’s
occurring on a branch is independent of the branch’s
duration. Hence, this (implausible) independence as-
sumption is not an assumption of parsimony’s. This is
significant, in view of Goldman’s (1990) presentation of
a model that makes this independence assumption and
which, according to Goldman, suffices to ensure ordinal
equivalence.

I have run this test for parsimony’s presuppositions by
using the Tuffley-Steel model as the basis for the test, but,
in principle, any other model that induces ordinal equiv-
alence could be used in the same way. Does this mean
that we could use Felsenstein’s or Goldman’s models to
evaluate which entailments of the Tuffley-Steel model are
assumptions that parsimony makes? There is a compli-
cation here. The Tuffley-Steel model understands both
ML and MP as outputting tree topologies, but no as-
signments of states to interior nodes. Goldman (1990)
conceives of both procedures differently—each outputs
a tree topology and an assignment of character states to
allinterior nodes. The same question arises in connection
with Farris’s (1973) analysis of a model that he claims in-
duces ordinal equivalence. Farris’ model assumes very
little about the evolutionary process—in particular, there
is no assumption that all changes at a site have the same
probability. The problem is that Farris (1973) conceives
of both ML and MP as outputting a tree topology and
an assignment of character states to interior nodes and
an assignment of character states to all the other time
slices on branches in the tree’s interior. However, if MP
outputs only a tree topology, and considers interior char-
acter states only as a means for deciding which topology
is best, the arguments by Farris and Goldman do not
identify models that induce ordinal equivalence (Sober,
1988; Steel and Penny, 2000).

But what of Felsenstein’s (1973, 1979) arguments,
which understand ML and MP as outputting only
tree topologies? How are the sufficient conditions that
Felsenstein identified for ordinal equivalence related to
the no common mechanism model? Unlike the no com-
mon mechanism model, Felsenstein’s (1973) and (1979)
models do not assume that all changes at a site within a
branch have the same probability. Felsenstein shows that
when rates are sufficiently small, the most parsimonious
tree will be the tree of maximum likelihood. This is a suf-
ficient condition for ordinal equivalence that is disjoint
from the one that Tuffley and Steel established.® If we use
Felsenstein’s (1973, 1979) results to implement the partial
test described above, we can answer a question that nat-
urally arises concerning the Tuffley-Steel result. The no
common mechanism model assumes neutral evolution.

SFelsenstein (1981) derived of ordinal equivalence in the context of
a symmetrical clock model in which rates can vary among characters.
This model also could be used to implement the partial test concerning
what parsimony presupposes.

If the probability of a site’s evolving from one character
state to another is the same as the probability of any other
change that might occur at the site (including a change
in the opposite direction), then there is no selection or
any other directional process favoring one character state
over any other. The question is whether neutralism is en-
tailed by ordinal equivalence. That there may be some
plausibility to this conjecture is suggested by some find-
ings about parsimony in another inferential context. In-
stead of using that method to reconstruct an evolutionary
tree, parsimony can be used on an assumed tree to assign
character states to ancestors. Maddison (1991) demon-
strated that likelihood and parsimony are ordinally
equivalent (for quantitative characters where parsimony
is interpreted to mean minimizing squared-change) in
this problem if a neutral model of evolution is assumed.
Sober (2002) showed that parsimony can fail to coincide
with likelihood in this problem if there is directional
selection. Given neutralism’s connection with ordinal
equivalence in the context of inferring ancestral character
states, perhaps neutralism is critical for ordinal equiva-
lence in the context of inferring tree topologies. This con-
jecture is refuted by Felsenstein’s results. Felsenstein’s
(1973, 1979) models don’t entail neutralism; hence, neu-
tralism is not an assumption that parsimony makes.

Much remains to be learned about parsimony’s pre-
suppositions. The sufficient conditions for ordinal equiv-
alence derived by Tuffley and Steel (1997) and by
Felsenstein (1973, 1979) do not tell us what parsimony
assumes. The partial test described here can demonstrate
that this or that proposition is not an assumption of par-
simony’s, but it cannot demonstrate that a given propo-
sition is one of parsimony’s presuppositions. However,
the criterion of ordinal equivalence allows us to describe
a second test procedure that goes beyond the one just de-
scribed. If a model entails that parsimony and likelihood
are not ordinally equivalent, then parsimony assumes
that that model is false. Unfortunately, this test proce-
dure will be limited in its analytic power. A model that
induces a failure of ordinal equivalence will inevitably
involve a number of postulates; what one can conclude
is that parsimony presupposes that at least one of them is
false, but the test procedure does not say which of them
parsimony assumes is false.

Another avenue of inquiry that is worth exploring
derives from the fact that Tuffley and Steel (1997) and
Felsenstein (1973, 1979) both use the frequentist proce-
dure for handling nuisance parameters. What connection
can be established between parsimony and likelihood
when nuisance parameters are handled in a Bayesian
fashion?

And finally, the quest to discover parsimony’s presup-
positions could be set to one side if a model of the evolu-
tionary process could be presented that everyone grants
is plausible and that suffices to induce ordinal equiv-
alence. The demonstration of sufficiency would not, of
course, show that parsimony assumes this model is true.
However, people prepared to grant that the model is
true will thereby have reason to conclude that parsi-
mony is legitimate (when judged by the criterion of or-
dinal equivalence). They assume the model is true, even
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if parsimony does not, and that will suffice to justify par-
simony in their eyes.

CONCLUDING COMMENTS

Since the early 1970s, a dispute has raged between de-
fenders of ML and defenders of MP. The former group
has followed a frequentist statistical philosophy, using
the likelihood ratio test. The entry of Bayesian methods
into the arena of phylogenetic inference is more recent.
There has been little discussion in the literature of the dif-
ference between frequentist and Bayesian approaches.
Perhaps the reason is that frequentists and Bayesians
agree that phylogenetic inference should be understood
as a statistical problem, and so they see MP as the com-
mon enemy. But, as in other domains of human conflict,
once a common enemy is perceived to be less threaten-
ing, one-time allies may turn their attention to the issues
that divide them. Frequentists and Bayesians need to dis-
cuss their disagreements; it is to be hoped that they will
do so without the acrimony that has characterized the
debate between cladists and frequentists.

One way to begin the comparison of frequentism and
Bayesianism is to see how often the two approaches li-
cense different conclusions. In the toy example presented
earlier of assessing hypotheses about Mom’s genotype,
the decision about how to handle nuisance parameters
makes an enormous difference. Is there reason to think
that this difference disappears in the data sets that sys-
tematists analyze? The comparison is worth developing
by using both real data sets and sets that are invented for
exploratory purposes.

Frequentists and Bayesians also need to explore the
use of model selection criteria such as AIC and BIC. The
likelihood ratio test is limited to nested models (i.e., to
some of the vertical comparisons in Table 1), whereas
AIC has no such limitation. Similarly, Bayesians have
so far limited themselves to considering alternative ge-
nealogical hypotheses within the context of a single pro-
cess model, but BIC permits one to consider a range of
process models.

The statistical analysis of MP is also worth develop-
ing further. This is an interesting project, both for those
who are already sold on the correctness of a statistical ap-
proach and for those who think that parsimony makes
sense in ways that statistical methods do not. As noted
earlier in connection with theidea of ordinal equivalence,
finding models in which parsimony and likelihood agree
throws light in both directions. The results of Tuffley
and Steel (1997) and of Felsenstein (1973, 1979) are il-
Iuminating, but other models (see, for example, Felsen-
stein [1981] and Steel and Penny [2004]) need to be ex-
plored before the conceptual terrain can be said to be
well understood.
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Welivein the age of comparative genomics, and it may
seem that there is not much point in reconstructing phy-
logenies using morphological data anymore. As more
and more genes and genomes are being sequenced, the
possibility that thousands or even millions of informa-
tive, independently evolving molecular characters can
be brought to bear on a given phylogenetic problem is
quickly becoming a reality (e.g., Rokas et al., 2003). Given
the rate that new sequence data are being added, and
the rate at which new innovations continue to acceler-
ate this process, it seems possible that in the not-too-
distant future we will be able to have a perfectly accurate
and well-supported phylogeny of most living species on
earth using molecular data alone. So why bother with
morphology?

A recent paper by Scotland et al. (2003; SEA hereafter)
offered a reappraisal of the role of morphology in phy-
logeny reconstruction. This is certainly an important and
timely topic to discuss, and their main thesis is bold and
controversial. They state that “We view any attempt to in-
clude more morphological data in phylogeny reconstruc-
tion as inherently problematic” (p. 545). Unfortunately,
most of their arguments are based on unsupported spec-
ulation, and they fail to mention numerous studies that
clearly contradict their conclusions. Given that many of
their comments are written as responses to book chapters
written by my collaborators and myself (e.g., Hillis and
Wiens, 2000; Poe and Wiens, 2000; Wiens, 2000a), I feel
obligated to elucidate some of these problems. Many of
the issues raised are central to how systematics is done
and will be conducted in the future. I will argue that,
despite many undeniable advantages of molecular data,
it is still absolutely necessary that we continue to collect
additional morphological data for phylogenetic analysis,
and continue to improve our methods for morphology-
based phylogenetics. Note that Jenner (2004) has pro-
vided an independent rebuttal of the SEA paper,

and he describes a large number of substantive criticisms
which show only limited overlap with my own.

WHY WE STILL NEED TO COLLECT MORE
MORPHOLOGICAL DATA

The Future

There are many reasons to continue to do morpho-
logical phylogenetics. But given the incredible rate of
advances in molecular systematics, it may be useful to
divide these reasons into those pertaining to the present
and future. Those pertaining to the future may actually
be the most relevant, because many present-day limita-
tions of molecular phylogenetics seem likely to be over-
come very soon. I will focus on the putative future first,
and then deal with present-day issues.

The most compelling reason to continue to collect mor-
phological data long into the future is to resolve the
phylogenetic relationships of fossil taxa and their rela-
tionships to living taxa (e.g., Maddison, 1996; Hillis and
Wiens, 2000; Jenner, 2004). The reconstructed Tree of Life
must include fossil taxa. Considering all the species that
have ever evolved, most are now extinct (>99% accord-
ing to some estimates; Novacek and Wheeler, 1992), and
many extinct groups were diverse, ecologically impor-
tant, and very distinct from their closest living relatives.
For now and the immediate future, the relationships of
most fossil taxa can only be determined through phylo-
genetic analysis of morphological data (despite impres-
sive molecular studies of very recent fossil taxa). Con-
trary to what SEA imply (p. 543), fossils are not merely
important for their potential to help resolve relationships
of living taxa, and Hillis and Wiens (2000) did not advo-
cate thorough taxon sampling solely because of its po-
tential benefits for phylogeny estimation.

Our understanding of the rate and timing of macroevo-
lutionary processes in both living and fossil taxa also



